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Abstract

The satellite image processing often uses data clustering methods to make ima-
ges segmented. The result of the segmentation is a supervised or unsupervised
classi�cation on the certain image. In the vector based GIS there is a well known
simple segmentation technique that is the thematic mapping. Unfortunately the
vector GIS does not use clustering methods, although the thematic mapping techni-
que takes only one kind of data into consideration. The classical thematic mapping
neglects the most of data except for only one, but the classi�cation would be much
better probably if you take all data into account.

The method introduced in this article suggests a new approach for thematic
mapping based on the built-in software solutions in the existing GIS software. The
main concept of this approach is the application of principal component analysis
which produces the �rst principal component being the target of thematic mapping.



1.1 Introduction
The thematic map is a kind of classi�cation where the procedure takes one data
column into consideration. In the most cases this result is proper. Graphic symbols,
styles of classes are depend on the value of a certain data �eld. Sometimes the
number of classes are �xed, but boundaries are not. In other cases the boundaries
are pending regarding the classi�cation algorithm.

Look at a simple example. Let us suppose we have a database on Hungarian
settlements with 50 kind of attribute data (50 columns) such as population, unemp-
loyment rate, migration in, migration out, economic data (revenues of companies,
margins, tax), highly educated people, English speaking people at least on middle
level, cultural facilities (cinemas, theaters), sport facilities, and so on. in a table
form. Many thematic map can be constructed based on this valuable database that
is important for decision support in local government, local policy. As many data
columns as many kind of thematic maps. This logic takes only one data column
into account. In most cases this functionality is enough for the everyday require-
ments.

There can be such a situation where we are going to take more than one or
all the data column into consideration for a serious analysis. In that case we are
willing to make classes based on every data column. Unfortunately the traditional
thematic mapping technique does not support this function because the algorithm
works on only one data column.

What is the problem with the traditional thematic mapping? When we make a
simple thematic map the algorithm picks only one data column up for the compu-
tation of classes, consequently other data columns are ignored in the de�nition of
classes. This is a huge waste of data. If the problem that we are going to investigate
is simple and the one-column-based thematic map represents every effect, this tech-
nique is acceptable. If the problem is multivariate, the understanding of it requires
more than one data column, the traditional thematic mapping becomes unusable
and unacceptable. Any market leader GIS software can not serve solutions for this
case.

The technique that will be introduced in this paper is willing to outline a met-
hod that resolves the multivariate thematic mapping problem.

1.2 Clusters, segments, classes
The modern database technology produced huge databases, so it is a hard task to
�nd something in them. The name of the technology which helps us to navigate
in huge databases is the data mining. These methods support the segmentation
of huge databases into smaller units such as classes, clusters, data groups. One
of the most important tool in data mining is the clustering, that sometimes called
classi�cation or segmentation. These are not synonymes but very similar. The aim
of the data mining is the interpretation of data. The interpretation often means
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Figure 1.1: Classi�cation by eyes (quick-look method). The A, B,C and the d, e
groups can be recognized very well. It can be seen, that any point belonging to a
group is nearer the center of its group then any other groups.

identi�cation of data groups with memberships of data records. This procedure is
the segmentation where we identify the membership of data records. If we know
the physical meaning of the segments let we name it supervised classi�cation. If do
not know that meaning, but the data groups are made, let we name it unsupervised
classi�cation.

This technology is well known in the raster based GIS such as satellite image
processing. Why do not we use clustering in vector based GIS in multivariate
cases?

1.2.1 De�nition of clusters
Before the de�nition of clusters look at the �gure 1.1, where a point cloud can
be seen based on the cross-plot technique, that �gures two data columns in two
dimensional space. It is simple to notice point-groups, that we can consider classes,
at �rst look. If we investigate the point cloud we de�ne three main groups (A, B,
C) and two smaller ones (d, e). Look at the �gure 1.1, where belonging points are
near each other. Obviously this segmentation technique is not exact because the
result is depends on the abilities of the person who look at it. In the other hand
�quick-look� method works two dimensional cases only. If the dimension number
is higher than two, the method becomes invalid.

If we are willing to de�ne groups exactly, at �rst we should de�ne similarity
which will be the bases of clustering. Let us say, if two points are similar let they
belong to the same cluster. The next question is when two points are similar? They
are similar if they are near each other.

It must be emphasized that there are many different clustering algorithms. Our
purpose is to introduce the possibilities of the application of clustering methods in
vector based GIS. Look at some base concept on it.
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1.2.2 Distance matrix
Let us de�ne the distance between two data points, where u, v represent the certain
points. The Euklidean-distance is the following:

d(u, v) =


d∑

i=1
[ui − vi]2


1/2

.

Compute the distances between every data point. Let us denote the distance
di j, between i-th and j-th points. Arrange distances into a matrix form, that is the
distance matrix (D):

D =



d11 d12 . . . d1n
d21 d22 . . . d2n
...

...
. . .

dn1 dn2 . . . dnn



Near points are similar, so the distance matrix expresses the similarity. How
to de�ne clusters based on the similarity matrix? There are two main algorithm
families for establishing clusters. The �rst algorithm group is the partitioning pro-
cedures, and the second group is the hierarchic procedures.

Partitioning procedures identify clusters with iterative approximation. The next
pending point will be set up that group whose distance from the representative
point (for instance weight-point) is the smallest one. In this way the cluster who
includes that point, has to be recomputed with this new point, consequently the
representative point will be changed a little. Every new point in a cluster makes
little changes in the representative point of a certain cluster.

In the hierarchical procedures the data elements are arranged into trees where
the data are is leaves, and inner points of the tree represent a cluster. We have
two starting possibilities. The �rst one is that every point de�nes an individual
cluster. Progressing the clustering process clusters have been uni�ed depending on
the conditions of the iteration.

The second starting possibility is that all data belongs to one cluster. If the
clustering process is progressing the clusters are cut into smaller clusters depending
on the conditions of the iteration.

1.3 Principal components
The cluster analysis takes all data into consideration while identi�es clusters. If the
dimension of the database is rather high, then the size of the distance matrix be-
comes seriously high, which can produce practical difficulties of the computation.
In case of large dimensions practical difficulties make the computation impossible.
There is only one way to solve clustering, to make dimensions decreased. The
reduction of dimension number produces data waste. In this section an effective

3



method will be described for decreasing dimension number which is the principal
component analysis.

Let us have p observation vectors, and each vector has n data. Let Xj vectors
be random variables and elements of them are realization of a random variable.

x1 x2 . . . xp

x1
1 x2

1 . . . xp
1

x1
2 x2

2 . . . xp
2

...
...

x1
n x2

n . . . xp
n

In order remove physical dimensions from data let them be standardized

�x j
i =

x j
i − x j

s j

where x j is the mean of j-th vector elements and �s j is the empirical scatter. In
this way random variables became 0 mean and 1 empirical scatter (�gure 1.2).

Figure 1.2: Geometrical meanings of a the standardization and the principal com-
ponent transformation. The standardization makes dataset 0 mean and 1 empirical
standard deviation. Principal component transformation moves the point cloud to
the origo and rotate it to the proper direction.

Compute the correlation matrix (R) of the dataset, where

rxy =
M[(x − M(x))(y − M(y))]

D(x)D(y)

R =



r11 r12 . . . r1p
r21 r22 . . . r2p
...

...
. . .

rp1 rp2 . . . rpp



Let us compute the eigenvalues and the eigenvectors of the correlation matrix,
i. e. solve the following equation:
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Rv = λv
Denote |λ1| > |λ2| > . . . > |λp| the eigenvalues and v1, v2, . . . vp the eigen-

vectors. Based on the eigenvectors and the standardized random variables the j-th
principal component can be computed

C j
i =

∑

p
xp

i v j
p

where i = 1, 2, . . . p and j = 1, 2, . . . p.
Principal components have some important properties, such as

• principal components make orthogonal system, i.e. uncorrelated. Their cor-
relation matrix is diagonal

R =



λ1 0
λ2

. . .

0 λp



• eigenvectors are normalized, i.e. theirs scalar product is < vi ·v j > δi j, where
δ is the Kronecker-δ.

• The sum of eigenvalues is equal to the numbers of observation vectors.

• The variance content of the standardized variables and the principal compo-
nents are the same, i.e.

p∑

j=1
λ j =

p∑

i=1
�s2
i =

p∑

k=1
s2

k = p

Finally we can establish, that the principal component analysis rearranged the
variances and extracted it to the �rst principal component. The geometrical mea-
ning of the principal component analysis can be seen on the �gure 1.2.

If the �rst principal component includes the largest common part of variances,
it can substitute whole dataset in the certain computation. Based on this method
we neglect some part of variances, but the waste is optimal, i.e. not more then it
has to be. This technique does not work if the original dataset is uncorrelated. In
this case we need to think about our data model and reconstruct it.

The introduced method is based on the random variable approach, but it can be
de�ned on algebraic bases also.
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Figure 1.3: This thematic map shows the standard population of the settlements.

1.4 Thematic map as a result of clustering
The previous logic improved the importance of cluster analysis, and in case of large
number of dimensions, the practical bene�ts of the application of principal com-
ponent analysis. Thematic mapping is an everyday task in the vector based GIS, if
we need a segmented database into classes in order to interpret data easily. Market
leader GIS software packages unfortunately do not support the direct cluster analy-
sis despite of raster based satellite image processing systems. In order not to give
up the bene�ts of taking every data column into account, if we are willing to make
dataset to be segmented, we should use the principal component analysis in case of
traditional thematic mapping.

Based on the �rst principal component we can construct a thematic map on it.
Compare the traditional method (�gure 1.3 and 1.4) to the �rst principal component
based one (�gure 1.5).

Sometimes we need to understand the physical meaning of principal compo-
nents, that inform us the background of dataset. Regarding the content of the origi-
nal dataset it can be identi�ed well. Sometimes it can not be done, because physical
effects behind the phenomena can not be interpreted. If we are going to make the-
matic maps on the dataset we should understand the meaning of the �rst principal
component.
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Figure 1.4: This thematic map shows an important touristic information: the sum
of nights in hotels at the certain settlement.

Figure 1.5: A thematic map that is based on the �rst principal component. The �rst
principal component of settlements is coming from many statictical data of them.
The result of the classi�cation is the same than the status of settlements (�gure 1.6)
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Figure 1.6: A thematic map is based on the status of settlements (capital, center
city of a county, city, village, others). The result of the classi�cation is the same as
on the �rst principal component (�gure 1.5)

1.5 Conclusion
The traditional thematic mapping is an excellent tool if we are willing to exp-
ress graphically the spatial distribution a certain data column. If our classi�cation
analysis requires more than one data columns taking into consideration we should
use cluster analysis or principal component analysis if we have traditional thematic
mapping functionalities only. The resulted classes are more reliable than the single
data column based technique.
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